The above applet is intended to show how a technique
introduced by Claudius Ptolemy in the second century
was used to predict the location of Mars along the Zodiac
at any time and date.
Ptolemy's system for Mercury is
much more difficult to follow.
His method for the Moon
is different again and also rather complicated.
When the applet is first seen,
the yellow circle showing the position of the mean Sun,
the epicycle
and the red circle showing the True Position of Mars
will be rotating. As the date changes from October to December 1501, for example, the retrograde motion of Mars can be seen. At the bottomright, the 1st and 2nd stationary points are indicated. You must have a slow positive motion for this to work reasonably well. There is another example starting in November 1503. Have fun.
The Mars applet shows the following:
A line marked 'Aux' passes over the Zodiac
at an angle about which Mars exhibits symmetry.
This line is commonly drawn right across
the circle of the zodiac and
is known as the line of apsides.
The line is roughly shown in the position it had
in the year of 1500 A.D..
A red line from the 'Earth' point is drawn
to the point marked 'equant'.
The above applet demonstrates the method used in the middle ages to predict the position of Mars for any date. Mars was chosen for the applet because the set of values necessary for Mars best illustrates the underlying technique. In about 140 A.D. Claudius Ptolemy integrated the aux, equant, deferent and epicycle ideas devised by his predecessors into a single technique. This allowed him to predict the position around the Zodiac of four of the planets more accurately than had been accomplished by any of his predecessors.
He used exactly the same principles to account for the
retrograde motions of Mars, Saturn, Jupiter and Venus but
for each of these he used different values for:
His technique was used by astronomers until (and well beyond) the date when Copernicus published his revolutionary theories in 1542, about 1400 years after Ptolemy wrote his Almagest, which described this technique.
PurposeThe reason I prepared the applet was that I needed a better understanding of the way the equant, deferent and epicycle technique introduced by Ptolemy provides the varying angles between the 1st and 2nd stationary points and hence the retrograde arc. The applet gave me a better understanding of the relationship between the forward movement of the mean longitude and the reverse movement of the epicycle pointer before, during and after the planet reaches its stationary points.I achieved my objective, and hope that after conscientiously studying the applet, others will benefit in the same way. In late 2010 I was studying Schöner's Aequatorium Astronomicum (1521) and wanted to understand precisely the way his tables were used to set his equatoria. (The examples in his Opera (1551) are not clear on this point.) In particular I wanted to know precisely how the mean position of the Sun was incorporated within the minimal arithmetic required to set the equatoria. (Schöner only provides tables of the mean motion of each planet, and includes no tables for each planet which give the mean argument.) Although Evans (1998) pointed me in the right direction, it was my applet which clarified the method for me. I was intrigued by Schöner's technique of using parallel threads to set the position of the offset mean longitude [Evans 1998 p405] which eliminated the need for a scale around the equant point, A similar procedure might have eliminated the need for the calculation of the mean argument. Presumably Schöner decided to use a very simple arithmetical calculation to derive the mean argument because of its improved accuracy [Evans 1998 p406]. I also tried to relate the position of the stationary points to the lines from the Earth point to the line on the epicycle circle, as shown by Pedersen (1974) on, for instance, p185 and p313.
AccuracyThis applet is solely intended to domonstrate the principles used by Ptolemy. When rotating slowly, the lines and circles jump a tiny bit due to the limitations of Java, because their positions are limited by pixel locations. No serious attempt has been made to ensure the absolute accuracy of the planet's longitude on any particular day. My tests seem to show the accuracy is usually within 2degrees. A more accurate selection of the variables would have provided more accurate predictions.Note that the values of the retrograde arc at the bottomright assume that the daily rotation is set to plus 1 day and the full retrograde arc is witnessed from the first to the last stationary points. Clicking on the 0day button doesn't upset the count, if you want to write down the appropriate data. I recognise that the angles for the retrograde motion when occurring on either side of the First Point of Aries, are incorrect. However, I achieved my objective. The applet gave me a real feel for how Ptolemy's system worked in practice. I think I started it on the 15th November 2010 and completed it at issue 0.5 on 24th November 2010. Issue 0.5 displayed the angles of the first and last retrograde points, and the retrograde arc. I worked on it again at the beginning of March 2011, producing issue 1.0
References:The most helpful books on the topic are:
Evans, James (1998). History and Practice of Ancient Astronomy'. North, John (1976). Richard of Wallingford in 3 volumes.
North, John (2005). God's Clockmaker.
Gingerich, Owen (1971).
Apianus's Astronomicum Caesareum and its Leipzig Facsimile.
Published in the Journal for the History of Astronomy ii (1971), pages 168177. Pedersen, Olaf (1974). A Survey of the Almagest. Edidit Bibliotheca Universitatis Hauniensis Vol.30. Odense University Press, Denmark. ISBN 87 7492 087 1.
Ptolemy, Claudius (approx.140 A.D.). Almagest.
Schöner, Johanne (1521/1534). Aequatorium Astronomicum. Apian, Peter (1540). Astronomicum Caesareum. Examples for his Mars longitude instrument are given on D2v and D3v, the instrument being on D3. Although Apian introduced extra discs which eliminated the arithmetic, his basic technique is the same as had been used since the time of Ptolemy (trepidation excepted).
